model { for(i in 1:N){ mu_M[i] <- alpha*x[i] M[i] ~ dnorm(mu_M[i],prec1) logit(mu_y[i])<- c*x[i]+beta*M[i] y[i] ~ dbern(mu_y[i]) logit(mu_y2[i])<-c*x[i]+beta*(M[i]+deltam) logit(mu_y3[i])<-beta*(M[i]+deltam) logit(mu_y4[i])<-c+beta*(M[i]+deltam) ie[i]<-alpha/deltax*(mu_y2[i]-mu_y[i])/deltam de[i]<-(mu_y4[i]-mu_y3[i])/deltax te[i]<-ie[i]+de[i] } alpha ~ dnorm(0, 1.0E-2) beta ~ dnorm(0, 1.0E-2) c ~ dnorm(0, 1.0E-2) var1 ~ dgamma(1,0.1) prec1 <-1/var1 }